Convolution of Two Causal Exponential Sequences

Prof. Brian L. Evans

October 16, 2010
Case \#1. $y[n]=x_{1}[n] * x_{2}[n]$ where $x_{1}[n]=a^{n} u[n]$ and $x_{2}[n]=b^{n} u[n]$ and $a \neq b$.

$$
\begin{gathered}
y[n]=\left(a^{n} u[n]\right) *\left(b^{n} u[n]\right) \\
y[n]=\sum_{m=-\infty}^{\infty}\left(a^{m} u[m]\right)\left(b^{n-m} u[n-m]\right)
\end{gathered}
$$

For $u[m]$ to be $1, m \geq 0$. For $u[n-m]$ to be $1, n-m \geq 0$ or equivalently $m \leq n$.
For $n \geq 0$, the limits of summation are $0 \leq m \leq n$.

$$
y[n]=\sum_{m=0}^{n} a^{m} b^{n-m} \quad \text { for } n \geq 0
$$

The term of n inside the summation does not depend on m and can be pulled out.

$$
y[n]=b^{n} \sum_{m=0}^{n}\left(\frac{a}{b}\right)^{m} \quad \text { for } n \geq 0
$$

We can simplify the above summation using an identity on page 887 in Roberts' Signals and Systems book:

$$
y[n]=b^{n} \frac{1-\left(\frac{a}{b}\right)^{n+1}}{1-\frac{a}{b}} \text { for } n \geq 0
$$

We can multiply numerator and denominator by b, and multiply the b^{n} term through numerator to obtain the following result:

$$
y[n]=\frac{b^{n+1}-a^{n+1}}{b-a} u[n]
$$

Case \#2. $y[n]=x_{1}[n] * x_{2}[n]$ where $x_{1}[n]=b^{n} u[n]$ and $x_{2}[n]=b^{n} u[n]$. The first four steps are the same as in the above. We can then substitute $a=b$:

$$
y[n]=b^{n} \sum_{m=0}^{n} 1^{m} \quad \text { for } n \geq 0
$$

With $1^{m}=1$, we are summing 1 for $(n+1)$ times when $n \geq 0$, which gives us

$$
y[n]=(n+1) b^{n} u[n]
$$

